bsfit.nodes.models.utils.get_trial_prediction

bsfit.nodes.models.utils.get_trial_prediction(output: dict, params: dict, n_repeats: int)[source]

get model-generated stochastic choices

Parameters
  • output (dict) –

    'PestimateGivenModel': estimate probabilities
    'map': max-a-posteriori percepts
    'conditions': task conditions
    

  • params (dict) –

    parameters:

    params: {
        "task": {
            "fixed_params": the task fixed parameters
            },
        "model": {
            "fixed_params": the model fixed parameters
            "init_params": the model initial parameters
        }
    

  • n_repeats (int) – repeat count per condition, when granularity=”trial”

Returns

returns “dataset” to output

Return type

(dict)

Note

-for now “stim_mean” must be integers