bsfit.nodes.models.utils.get_trial_prediction¶
- bsfit.nodes.models.utils.get_trial_prediction(output: dict, params: dict, n_repeats: int)[source]¶
get model-generated stochastic choices
- Parameters
output (dict) –
'PestimateGivenModel': estimate probabilities 'map': max-a-posteriori percepts 'conditions': task conditions
params (dict) –
parameters:
params: { "task": { "fixed_params": the task fixed parameters }, "model": { "fixed_params": the model fixed parameters "init_params": the model initial parameters }
n_repeats (int) – repeat count per condition, when granularity=”trial”
- Returns
returns “dataset” to output
- Return type
(dict)
Note
-for now “stim_mean” must be integers