bsfit.nodes.models.utils.get_proba_percept¶
- bsfit.nodes.models.utils.get_proba_percept(stim_mean: pandas.core.series.Series, params: dict, k_llh: numpy.ndarray, k_prior: numpy.ndarray, k_card: float, prior_tail: float, p_rand: float)[source]¶
get the percept probability density
- Parameters
stim_mean (pd.Series) – the stimulus features
params (dict) –
the parameters:
params: { "task": { "fixed_params": the task fixed parameters }, "model": { "fixed_params": the model fixed parameters "init_params": the model initial parameters }
k_llh (np.ndarray) – the likelihood concentrations
k_prior (np.ndarray) – the prior concentrations
k_card (float) – the cardinal prior concentration
prior_tail (float) – the tail of the prior
p_rand (float) – the probability of random lapse
- Raises
ValueError – the percept probabilities do not sum to 1
- Returns
the percept probabilities and calculated variables
- Return type
(dict)