bsfit.nodes.models.utils.get_proba_percept

bsfit.nodes.models.utils.get_proba_percept(stim_mean: pandas.core.series.Series, params: dict, k_llh: numpy.ndarray, k_prior: numpy.ndarray, k_card: float, prior_tail: float, p_rand: float)[source]

get the percept probability density

Parameters
  • stim_mean (pd.Series) – the stimulus features

  • params (dict) –

    the parameters:

    params: {
        "task": {
            "fixed_params": the task fixed parameters
            },
        "model": {
            "fixed_params": the model fixed parameters
            "init_params": the model initial parameters
        }
    

  • k_llh (np.ndarray) – the likelihood concentrations

  • k_prior (np.ndarray) – the prior concentrations

  • k_card (float) – the cardinal prior concentration

  • prior_tail (float) – the tail of the prior

  • p_rand (float) – the probability of random lapse

Raises

ValueError – the percept probabilities do not sum to 1

Returns

the percept probabilities and calculated variables

Return type

(dict)