bsfit.nodes.models.utils.get_bayes_lookup¶
- bsfit.nodes.models.utils.get_bayes_lookup(percept_space: numpy.array, stim_mean: numpy.array, k_llh: float, prior_mode: float, k_prior: float, prior_shape: str, k_card: float, readout: str)[source]¶
Create a bayes lookup matrix based on Girshick paper
- Parameters
percept_space (np.ndarray) – the percept space (1:1:360)
stim_mean (np.ndarray) – the stimulus features
k_llh (float) – the likelihood concentration
prior_mode (float) – the mode of the prior
k_prior (float) – the prior concentrations
prior_shape (str) – the prior function
k_card (float) – the cardinal prior concentration
readout (str) – the decision process (“map”)
- Usage:
percept, logl_percept = get_bayes_lookup( percept_space=np.arange([0,360,1]), stim_mean=np.arange([0,360,5]), k_llh=5.0, prior_mode=225.0, k_prior=4.77, k_card=0.0, prior_tail=0.0, prior_shape='vonMisesPrior', )
- Returns
percepts (np.ndarray): percept likelihood (M_measurements x N_stimulus features)
- Return type
(np.ndarray)