bsfit.nodes.cirpy.utils.get_circ_weighted_mean_std¶
- bsfit.nodes.cirpy.utils.get_circ_weighted_mean_std(angle: numpy.ndarray, proba: numpy.ndarray, type: str) dict [source]¶
calculate circular data statistics
- Parameters
angle (np.ndarray) – angles in degree or cartesian coordinates
proba (np.ndarray) – each angle’s probability of occurrence
type (str) – “polar” or “cartesian”
- Usage:
import numpy as np from bsfit.nodes.cirpy.utils import get_circ_weighted_mean_std degree = np.array([358, 0, 2, 88, 90, 92]) proba = np.array([1, 1, 1, 1, 1, 1])/6 output = get_circ_weighted_mean_std(degree, proba, "polar") output.keys() # Out: dict_keys(['coord_all', 'deg_all', 'coord_mean', 'deg_mean', # 'deg_all_for_std', 'deg_mean_for_std', 'deg_var', # 'deg_std', 'deg_sem']) output["deg_mean"] # Out: array([45.]) output["deg_std"] # array([45.02961988])
- Returns
angle summary statistics (mean, std, var, sem)
- Return type
(dict)
- Raises
ValueError – type is not “polar” or “cartesian”