bsfit.nodes.cirpy.utils.get_circ_conv¶
- bsfit.nodes.cirpy.utils.get_circ_conv(X_1: numpy.ndarray, X_2: numpy.ndarray)[source]¶
convolve circular data
- Parameters
X_1 (np.ndarray) – a column vector or a matrix
X_2 (np.ndarray) – a column vector or a matrix
- Usage:
import numpy as np from bsfit.nodes.cirpy.utils import get_circ_conv impulse = np.zeros([10,1]) impulse[5] = 1 convolved = get_circ_conv(np.random.rand(10,1), impulse) Out:
- Returns
convolved matrix
- Return type
(np.array)
Notes
Convolution is applied column-wise between columns i of X_1 and i of X_2 The probability that value i in vector 2 would be combined with at least one value from vector 1 vector 1 and 2 are col vectors (vertical)