bsfit.nodes.cirpy.data.VonMisesMixture

class bsfit.nodes.cirpy.data.VonMisesMixture(p: bool)[source]

Bases: object

Mixture of Von Mises class

__init__(p: bool)[source]

instantiate VonMisesMixture class

Parameters
  • p (bool) – True/False means probabilities

  • not (or) –

Methods

__init__(p)

instantiate VonMisesMixture class

get(v_x, v_u, v_k, mixt_coeff)

generate a mixture of von mises functions of probability densities

get(v_x: numpy.ndarray, v_u: numpy.ndarray, v_k: list, mixt_coeff: float) numpy.ndarray[source]

generate a mixture of von mises functions of probability densities

Parameters
  • v_x (np.ndarray) – von mises’ support space

  • v_u (np.ndarray) – von mises’ mean

  • v_k (list) – von mises’ concentration parameter

  • mixt_coeff (float) – von mises’ mixture coefficient

Returns

a mixture of von Mises

Return type

(np.ndarray)

Usage:

v_mixt = VonMisesMixture(p=True)
v_x = np.arange(0, 360, 1)
v_u = np.array([0, 90, 180, 270])
v_k = [2.7, 2.7, 2.7, 2.7]
mixture_coeff = 0.25
mixture = vm_mixt.get(v_x, v_u, v_k, mixture_coeff)