bsfit.nodes.cirpy.data.VonMisesMixture¶
- class bsfit.nodes.cirpy.data.VonMisesMixture(p: bool)[source]¶
Bases:
object
Mixture of Von Mises class
- __init__(p: bool)[source]¶
instantiate VonMisesMixture class
- Parameters
p (bool) – True/False means probabilities
not (or) –
Methods
__init__
(p)instantiate VonMisesMixture class
get
(v_x, v_u, v_k, mixt_coeff)generate a mixture of von mises functions of probability densities
- get(v_x: numpy.ndarray, v_u: numpy.ndarray, v_k: list, mixt_coeff: float) numpy.ndarray [source]¶
generate a mixture of von mises functions of probability densities
- Parameters
v_x (np.ndarray) – von mises’ support space
v_u (np.ndarray) – von mises’ mean
v_k (list) – von mises’ concentration parameter
mixt_coeff (float) – von mises’ mixture coefficient
- Returns
a mixture of von Mises
- Return type
(np.ndarray)
Usage:
v_mixt = VonMisesMixture(p=True) v_x = np.arange(0, 360, 1) v_u = np.array([0, 90, 180, 270]) v_k = [2.7, 2.7, 2.7, 2.7] mixture_coeff = 0.25 mixture = vm_mixt.get(v_x, v_u, v_k, mixture_coeff)