bsfit.nodes.cirpy.data.VonMises

class bsfit.nodes.cirpy.data.VonMises(p: bool)[source]

Bases: object

Von Mises class

__init__(p: bool)[source]

instantiate von mises

\[V(x,u,k) = e^{k.cos(x-u)}/(2\pi.besseli(0,k))\]
Parameters

p (bool) – True (for probability) or False (for function)

Methods

__init__(p)

instantiate von mises

get(v_x, v_u, v_k)

generate von Mises functions or probability densities

get(v_x: numpy.array, v_u: numpy.array, v_k: list)[source]

generate von Mises functions or probability densities

Parameters
  • v_x (np.array) – von mises’ support space

  • v_u (np.array) – von mises’ mean

  • v_k (list) – von mises’ concentration

Usage:
v_x = np.arange(0,360,1)
v_u = np.array([0,90,180,270])
v_k = [2.7, 2.7, 2.7, 2.7]
von_mises = VonMises(p=True)
von_mises = von_mises.get(v_x, v_u, v_k)
Returns

von mises functions or probability densities

Return type

(np.ndarray)