bsfit.nodes.cirpy.data.VonMises¶
- class bsfit.nodes.cirpy.data.VonMises(p: bool)[source]¶
Bases:
object
Von Mises class
- __init__(p: bool)[source]¶
instantiate von mises
\[V(x,u,k) = e^{k.cos(x-u)}/(2\pi.besseli(0,k))\]- Parameters
p (bool) – True (for probability) or False (for function)
Methods
__init__
(p)instantiate von mises
get
(v_x, v_u, v_k)generate von Mises functions or probability densities
- get(v_x: numpy.array, v_u: numpy.array, v_k: list)[source]¶
generate von Mises functions or probability densities
- Parameters
v_x (np.array) – von mises’ support space
v_u (np.array) – von mises’ mean
v_k (list) – von mises’ concentration
- Usage:
v_x = np.arange(0,360,1) v_u = np.array([0,90,180,270]) v_k = [2.7, 2.7, 2.7, 2.7] von_mises = VonMises(p=True) von_mises = von_mises.get(v_x, v_u, v_k)
- Returns
von mises functions or probability densities
- Return type
(np.ndarray)